|
|
Line 8: |
Line 8: |
| <br/> | | <br/> |
| | | |
| + | <br/> |
| | | |
− | | + | <br/> |
| | | |
| = Micro-gasifiers - A Short Story about the History of Micro-gasification = | | = Micro-gasifiers - A Short Story about the History of Micro-gasification = |
| | | |
− | <font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt"><font color="#00000a"><span lang="en-US"><span style="font-style: normal"><span style="font-weight: normal">As</span></span></span></font><font color="#00000a"><span lang="en-US"><span style="font-style: normal">'''descendants of the steam-engines'''</span></span></font><font color="#00000a"><span lang="en-US"><span style="font-style: normal"><span style="font-weight: normal">, microgasifiers went through different stages with changing names, models and usage. Gasifiers of smaller size and weight conquered individuals lives through</span></span></span></font><font color="#00000a"><span lang="en-US"><span style="font-style: normal"> '''mobility, cooking and agriculture'''</span></span></font><font color="#00000a"><span lang="en-US"><span style="font-style: normal"><span style="font-weight: normal">. Woodgas drove millions of vehicles equipped with Imbert-generators during the 1930s and 40s in Europe. After propagation trough international cooperation since the 80s many households in Africa nowadays use microgasifiers as efficient cooking-stoves. Charcoal is a product of pyrolysis and stabilizes a highly fertile soil called Terra preta – an anthropogenic product rediscovered and reconstructed in recent years. Terra preta combines by-products of micro-gasifiers with recycling processes which form the basis of an ecological and social sustainable economy.</span></span></span></font></font></font></font> | + | <font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt"><font color="#00000a"><span lang="en-US"><span style="font-style: normal"><span style="font-weight: normal">As</span></span></span></font><font color="#00000a"><span lang="en-US"><span style="font-style: normal">'''descendants of the steam-engines'''</span></span></font><font color="#00000a"><span lang="en-US"><span style="font-style: normal"><span style="font-weight: normal">, microgasifiers went through different stages with changing names, models and usage. Gasifiers of smaller size and weight conquered individuals lives through</span></span></span></font><font color="#00000a"><span lang="en-US"><span style="font-style: normal">'''mobility, cooking and agriculture'''</span></span></font><font color="#00000a"><span lang="en-US"><span style="font-style: normal"><span style="font-weight: normal">. Woodgas drove millions of vehicles equipped with Imbert-generators during the 1930s and 40s in Europe. After propagation trough international cooperation since the 80s many households in Africa nowadays use microgasifiers as efficient cooking-stoves. Charcoal is a product of pyrolysis and stabilizes a highly fertile soil called Terra preta – an anthropogenic product rediscovered and reconstructed in recent years. Terra preta combines by-products of micro-gasifiers with recycling processes which form the basis of an ecological and social sustainable economy.</span></span></span></font></font></font></font> |
| | | |
| <br/> | | <br/> |
Line 19: |
Line 20: |
| <br/> | | <br/> |
| | | |
| + | <br/> |
| | | |
| = Process and Products<br/> = | | = Process and Products<br/> = |
Line 44: |
Line 46: |
| <u><font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt">'''Characteristics of the products:'''</font></font></font></u><br/> | | <u><font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt">'''Characteristics of the products:'''</font></font></font></u><br/> |
| *<font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt">Emissions of '''Carbon Monoxide (CO)''' and '''Particulate Matter (PM)''' from micro-gasifiers are comparatively low to other cookingstoves</font></font></font><br/> | | *<font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt">Emissions of '''Carbon Monoxide (CO)''' and '''Particulate Matter (PM)''' from micro-gasifiers are comparatively low to other cookingstoves</font></font></font><br/> |
− | *<font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt"><font color="#00000a"><span lang="en-US">With micro-gasification also a valuable by-product is produced: approx. 10% of the carbon that was contained in the biomass will be thermally stabilized and bounded in little amounts of charcoal that remain in the stove. There are stove-designs that also use the charcoal produced for thermal purposes and thus burn it. Another approach would be to use the charcoal as so-called “biochar” which means to add the charcoal to compost pits or directly to the soil to improve soil quality after the principles of “Terra Preta”</span></font></font></font></font> | + | *<font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt"><font color="#00000a"><span lang="en-US">With micro-gasification also a valuable by-product is produced: approx. 10% of the carbon that was contained in the biomass will be thermally stabilized and bounded in little amounts of charcoal that remain in the stove. There are stove-designs that also use the charcoal produced for thermal purposes and thus burn it. Another approach would be to use the charcoal as so-called “[[Biochar|biochar]]” which means to add the charcoal to compost pits or directly to the soil to improve soil quality after the principles of “Terra Preta”</span></font></font></font></font> |
| | | |
| <br/> | | <br/> |
Line 62: |
Line 64: |
| *<font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt">How can we prevent the users from inhaling carbon monoxide?</font></font></font><br/> | | *<font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt">How can we prevent the users from inhaling carbon monoxide?</font></font></font><br/> |
| | | |
− | <font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt">- Design: Make</font></font></font><span style="font-size: 15px; color: rgb(0, 0, 10); font-family: Arial, sans-serif" class="Apple-style-span">sure to have sufficient secondary air</span><br/> | + | <font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt">- Design: Make</font></font></font><span class="Apple-style-span" style="font-size: 15px; color: rgb(0, 0, 10); font-family: Arial, sans-serif">sure to have sufficient secondary air</span><br/> |
| *<font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt">Have you compared the effectiveness and efficiency of biogas, wood gas and LPG?</font></font></font><br/> | | *<font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt">Have you compared the effectiveness and efficiency of biogas, wood gas and LPG?</font></font></font><br/> |
| | | |
Line 89: |
Line 91: |
| <br/> | | <br/> |
| | | |
− | == <span style="font-size: 11pt; font-family: Arial, sans-serif; color: rgb(0, 0, 10);">General Information</span> == | + | == <span style="font-size: 11pt; font-family: Arial, sans-serif; color: rgb(0, 0, 10)">General Information</span> == |
| | | |
| *<font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt">In Tanzania, people living in urban areas prefer to use firewood, but people living in rural areas prefer to use charcoal. What are the differences between these two materials?</font></font></font> | | *<font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt">In Tanzania, people living in urban areas prefer to use firewood, but people living in rural areas prefer to use charcoal. What are the differences between these two materials?</font></font></font> |
Line 128: |
Line 130: |
| <br/> | | <br/> |
| | | |
− | <u>'''<span class="Apple-style-span" style="font-size: 15px; color: rgb(0, 0, 10); font-family: Arial, sans-serif;"><font color="#00000a"><span lang="en-US">Temperature</span></font><font color="#00000a"><span lang="en-US">distribution</span></font></span>''':</u> | + | <u>'''<span style="font-size: 15px; color: rgb(0, 0, 10); font-family: Arial, sans-serif" class="Apple-style-span"><font color="#00000a"><span lang="en-US">Temperature</span></font><font color="#00000a"><span lang="en-US">distribution</span></font></span>''':</u> |
− | *<span class="Apple-style-span" style="font-size: 15px; color: rgb(0, 0, 10); font-family: Arial, sans-serif">The temperatures are measured with 8 thermocouples (typ K) at three different levels inside of the fixed bed. Hence the radial and axial distribution can be studied.</span><br/> | + | *<span style="font-size: 15px; color: rgb(0, 0, 10); font-family: Arial, sans-serif" class="Apple-style-span">The temperatures are measured with 8 thermocouples (typ K) at three different levels inside of the fixed bed. Hence the radial and axial distribution can be studied.</span><br/> |
− | *<span class="Apple-style-span" style="font-size: 15px; color: rgb(0, 0, 10); font-family: Arial, sans-serif">The highest temperatures (~1000°C), which are attributed to exothermic combustion reactions, are measured at the bottom of the air column.</span><br/> | + | *<span style="font-size: 15px; color: rgb(0, 0, 10); font-family: Arial, sans-serif" class="Apple-style-span">The highest temperatures (~1000°C), which are attributed to exothermic combustion reactions, are measured at the bottom of the air column.</span><br/> |
− | *<span class="Apple-style-span" style="font-size: 15px; color: rgb(0, 0, 10); font-family: Arial, sans-serif">These reactions provide the heat for endothermic gasification, pyrolysis and drying processes, which occur inside of the fixed bed.</span><br/> | + | *<span style="font-size: 15px; color: rgb(0, 0, 10); font-family: Arial, sans-serif" class="Apple-style-span">These reactions provide the heat for endothermic gasification, pyrolysis and drying processes, which occur inside of the fixed bed.</span><br/> |
− | *<span class="Apple-style-span" style="font-size: 15px; color: rgb(0, 0, 10); font-family: Arial, sans-serif">The “pyrolysis front” (300°C) reaches after 40min the middle and after 90min the edge of the fixed bed.</span><br/> | + | *<span style="font-size: 15px; color: rgb(0, 0, 10); font-family: Arial, sans-serif" class="Apple-style-span">The “pyrolysis front” (300°C) reaches after 40min the middle and after 90min the edge of the fixed bed.</span><br/> |
− | *<span class="Apple-style-span" style="font-size: 15px; color: rgb(0, 0, 10); font-family: Arial, sans-serif">There is a different heating-up rate of the fixed bed at the different levels, therefore the “pyrolysis front” has an axial and a radial progress.</span> | + | *<span style="font-size: 15px; color: rgb(0, 0, 10); font-family: Arial, sans-serif" class="Apple-style-span">There is a different heating-up rate of the fixed bed at the different levels, therefore the “pyrolysis front” has an axial and a radial progress.</span> |
| | | |
| <br/> | | <br/> |
| | | |
| <u>'''<font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt"><font color="#00000a"><span lang="en-US">Gas</span></font><font color="#00000a"><span lang="en-US">composition:</span></font></font></font></font>'''</u> | | <u>'''<font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt"><font color="#00000a"><span lang="en-US">Gas</span></font><font color="#00000a"><span lang="en-US">composition:</span></font></font></font></font>'''</u> |
− | *<span class="Apple-style-span" style="font-size: 15px; color: rgb(0, 0, 10); font-family: Arial, sans-serif">Each run, three gas samples at different levels with specific temperatures are recorded from inside of the fixed bed. The temperatures are in a range of 200-600°C.</span><br/> | + | *<span style="font-size: 15px; color: rgb(0, 0, 10); font-family: Arial, sans-serif" class="Apple-style-span">Each run, three gas samples at different levels with specific temperatures are recorded from inside of the fixed bed. The temperatures are in a range of 200-600°C.</span><br/> |
− | *<span class="Apple-style-span" style="font-size: 15px; color: rgb(0, 0, 10); font-family: Arial, sans-serif">The average combustible gas composition consists of 55-60% carbon dioxide, 20-25% carbon monoxide, 7-10% hydrogen, 6-9% methane.</span><br/> | + | *<span style="font-size: 15px; color: rgb(0, 0, 10); font-family: Arial, sans-serif" class="Apple-style-span">The average combustible gas composition consists of 55-60% carbon dioxide, 20-25% carbon monoxide, 7-10% hydrogen, 6-9% methane.</span><br/> |
− | *<span class="Apple-style-span" style="font-size: 15px; color: rgb(0, 0, 10); font-family: Arial, sans-serif">Gas samples near the riser at the top of the stove point out a low content of carbon monoxide.</span> | + | *<span style="font-size: 15px; color: rgb(0, 0, 10); font-family: Arial, sans-serif" class="Apple-style-span">Gas samples near the riser at the top of the stove point out a low content of carbon monoxide.</span> |
| | | |
| <br/> | | <br/> |
Line 149: |
Line 151: |
| *<font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt"><font color="#00000a"><span lang="en-US">There is a different temperature distribution between the small particle size (<3,5mm) and the mix particle size distribution as a mixture of both sizes.</span></font></font></font></font> | | *<font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt"><font color="#00000a"><span lang="en-US">There is a different temperature distribution between the small particle size (<3,5mm) and the mix particle size distribution as a mixture of both sizes.</span></font></font></font></font> |
| *<font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt"><font color="#00000a"><span lang="en-US">Furthermore the heating-up rate differs with different particle sizes.</span></font></font></font></font> | | *<font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt"><font color="#00000a"><span lang="en-US">Furthermore the heating-up rate differs with different particle sizes.</span></font></font></font></font> |
− | *<font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt"><font color="#00000a"><span lang="en-US">Different thermo-chemical conversion phases take place in the sawdust stove:</span></font></font></font></font><br/><span class="Apple-style-span" style="font-size: 15px; color: rgb(0, 0, 10); font-family: Arial, sans-serif">Drying – Pyrolysis – Gasification – Combustion.</span> | + | *<font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt"><font color="#00000a"><span lang="en-US">Different thermo-chemical conversion phases take place in the sawdust stove:</span></font></font></font></font><br/><span style="font-size: 15px; color: rgb(0, 0, 10); font-family: Arial, sans-serif" class="Apple-style-span">Drying – Pyrolysis – Gasification – Combustion.</span> |
| *<font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt"><font color="#00000a"><span lang="en-US">There is sufficient heat for char gasification, but nevertheless a bit of char always remains as leftover.</span></font></font></font></font> | | *<font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt"><font color="#00000a"><span lang="en-US">There is sufficient heat for char gasification, but nevertheless a bit of char always remains as leftover.</span></font></font></font></font> |
− | *<font><font><font><span lang="en-US"><font color="#00000a" face="Arial, sans-serif"><span style="font-size: 11pt;">A low content of carbon monoxide in the exhaust gas can be expect out of gas samples, but has to be proved during a continuous measuring during a complete stove run</span></font></span></font></font></font> | + | *<font><font><font><span lang="en-US"><font face="Arial, sans-serif" color="#00000a"><span style="font-size: 11pt">A low content of carbon monoxide in the exhaust gas can be expect out of gas samples, but has to be proved during a continuous measuring during a complete stove run</span></font></span></font></font></font> |
| | | |
− | <font><font><font></font></font></font><br/>
| + | <br/> |
| | | |
− | == <span style="color: rgb(0, 0, 10); font-family: Arial, sans-serif; font-size: 15px; line-height: 23px;">General Information</span> == | + | == <span style="color: rgb(0, 0, 10); font-family: Arial, sans-serif; font-size: 15px; line-height: 23px">General Information</span> == |
| | | |
| *<font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt">Stove system - how to control the sawdust stove?</font></font></font> | | *<font color="#00000a"><font face="Arial, sans-serif"><font size="2" style="font-size: 11pt">Stove system - how to control the sawdust stove?</font></font></font> |
Line 195: |
Line 197: |
| <br/> | | <br/> |
| | | |
− | <font size="4" face="Arial, sans-serif" color="#00000A" class="Apple-style-span"></font>[[File:Testing microgasifiers.jpg|thumb|center|400px|Testing Micro Gasifiers|alt=Testing microgasifiers.jpg]]
| + | [[File:Testing microgasifiers.jpg|thumb|center|400px|Testing Micro Gasifiers|alt=Testing microgasifiers.jpg]] |
| | | |
| <br/> | | <br/> |
Line 222: |
Line 224: |
| = Further Reading = | | = Further Reading = |
| | | |
− | *<span style="line-height: normal; font-family: Arial" class="Apple-style-span">'''Anderson''', P. S., Reed, T. B. (2004): ''Biomass Gasification: Clean Residential Stoves, Commercial Power Generation, and Global Impacts'', [http://www.bioenergylists.org/stovesdoc/Anderson/GasifierLAMNET.pdf http://www.bioenergylists.org/stovesdoc/Anderson/GasifierLAMNET.pdf] (seen 18.8.2010).</span> | + | *<span class="Apple-style-span" style="line-height: normal; font-family: Arial">'''Anderson''', P. S., Reed, T. B. (2004): ''Biomass Gasification: Clean Residential Stoves, Commercial Power Generation, and Global Impacts'', [http://www.bioenergylists.org/stovesdoc/Anderson/GasifierLAMNET.pdf http://www.bioenergylists.org/stovesdoc/Anderson/GasifierLAMNET.pdf] (seen 18.8.2010).</span> |
| *'''Anderson''', P. S., Reed, T. B. (2007): ''Micro-Gasification: What it is and why it works'', in Boiling Point No 35, p. 34-37. | | *'''Anderson''', P. S., Reed, T. B. (2007): ''Micro-Gasification: What it is and why it works'', in Boiling Point No 35, p. 34-37. |
| *'''Anderson''', P. S. (2009): ''Construction Plans for the “Champion-2008” TLUD Gasifier Cookstove (including operational instructions)'', [http://bioenergylists.org http://bioenergylists.org] (seen 18.8.2010). | | *'''Anderson''', P. S. (2009): ''Construction Plans for the “Champion-2008” TLUD Gasifier Cookstove (including operational instructions)'', [http://bioenergylists.org http://bioenergylists.org] (seen 18.8.2010). |
Line 234: |
Line 236: |
| Please find more files to download here: [https://www.isis.tu-berlin.de/mod/resource/view.php?id=228195&subdir=/microgasifier www.isis.tu-berlin.de]<br/> | | Please find more files to download here: [https://www.isis.tu-berlin.de/mod/resource/view.php?id=228195&subdir=/microgasifier www.isis.tu-berlin.de]<br/> |
| | | |
− | [[Category:Tanzania]]
| |
| [[Category:Cookstoves]] | | [[Category:Cookstoves]] |
| + | [[Category:Tanzania]] |
Other Paper's submitted and accepted for the conference without oral presentation: