|
|
(2 intermediate revisions by one user not shown) |
Line 1: |
Line 1: |
| + | |
| + | = Overview = |
| + | |
| + | The piping system connects the biogas plant with the biogas appliances. It has to be safe, economic and should allow the required gas-flow for the specific gas appliance. '''Galvanized steel (G.I.) '''pipes or '''Polyvinyl chloride (PVC) '''pipes are most commonly used for this purpose. |
| + | |
| + | |
| | | |
| = Gas Pipe = | | = Gas Pipe = |
| | | |
− | The piping system connects the biogas plant with the biogas appliances. It has to be safe, economic and should allow the required gas-flow for the specific gas appliance. '''Galvanized steel (G.I.) '''pipes or '''Polyvinyl chloride (PVC) '''pipes are most commonly used for this purpose. Most prominently, the piping system has to be reliably gas-tight during the life-span of the biogas unit. In the past, faulty piping systems were the most frequent reason for gas losses in biogas units.
| + | Most prominently, the piping system has to be reliably gas-tight during the life-span of the biogas unit. In the past, faulty piping systems were the most frequent reason for gas losses in biogas units. |
| | | |
| <br/> | | <br/> |
| | | |
− | === <u>Steel Pipes</u><br/> === | + | === Steel Pipes<br/> === |
| | | |
| Galvanized steel water supply pipes are used most frequently, because the entire piping system (gas pipe, valves and accessories) can be made of universally applicable English/U.S. Customary system components, i.e. with all dimensions in inches. Pipes with nominal dimensions of 1/2" or 3/4" are adequate for small-to-midsize plants of simple design and pipe lengths of less than 30 m. For larger plants, longer gas pipes or low system pressure, a detailed pressure-loss (pipe-sizing) calculation must be performed.Furthermore, | | Galvanized steel water supply pipes are used most frequently, because the entire piping system (gas pipe, valves and accessories) can be made of universally applicable English/U.S. Customary system components, i.e. with all dimensions in inches. Pipes with nominal dimensions of 1/2" or 3/4" are adequate for small-to-midsize plants of simple design and pipe lengths of less than 30 m. For larger plants, longer gas pipes or low system pressure, a detailed pressure-loss (pipe-sizing) calculation must be performed.Furthermore, |
| | | |
− | When installing a gas pipe, special attention must be paid to: | + | <u>When installing a gas pipe, special attention must be paid to:</u> |
| *gas-tight, friction-type joints | | *gas-tight, friction-type joints |
| *line drainage, i.e. with a [[Piping Systems for Biogas Plants#Water Traps|water trap]] at the lowest point of the sloping pipe in order to empty water accumulation | | *line drainage, i.e. with a [[Piping Systems for Biogas Plants#Water Traps|water trap]] at the lowest point of the sloping pipe in order to empty water accumulation |
Line 29: |
Line 35: |
| <br/> | | <br/> |
| | | |
− | {| cellpadding="5" border="1" style="width: 100%;" | + | {| cellpadding="5" border="1" style="width: 100%" |
| |- | | |- |
| ! | | ! |
Line 36: |
Line 42: |
| |- | | |- |
| ! Length [m]: | | ! Length [m]: |
− | | style="text-align: center;" | 20 | + | | style="text-align: center" | 20 |
− | | style="text-align: center;" | 60 | + | | style="text-align: center" | 60 |
− | | style="text-align: center;" | 100 | + | | style="text-align: center" | 100 |
− | | style="text-align: center;" | 20 | + | | style="text-align: center" | 20 |
− | | style="text-align: center;" | 60 | + | | style="text-align: center" | 60 |
− | | style="text-align: center;" | 100 | + | | style="text-align: center" | 100 |
| |- | | |- |
| ! Flow-rate [m<sup>3</sup>/h] | | ! Flow-rate [m<sup>3</sup>/h] |
Line 51: |
Line 57: |
| | | | | |
| |- | | |- |
− | | style="text-align: center;" | 0.1 | + | | style="text-align: center" | 0.1 |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
| |- | | |- |
− | | style="text-align: center;" | 0.2<br/> | + | | style="text-align: center" | 0.2<br/> |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
| |- | | |- |
− | | style="text-align: center;" | 0.3 | + | | style="text-align: center" | 0.3 |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
| |- | | |- |
− | | style="text-align: center;" | 0.4 | + | | style="text-align: center" | 0.4 |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
| |- | | |- |
− | | style="text-align: center;" | 0.5 | + | | style="text-align: center" | 0.5 |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
− | | style="text-align: center;" | 3/4" | + | | style="text-align: center" | 3/4" |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
| |- | | |- |
− | | style="text-align: center;" | 1.0 | + | | style="text-align: center" | 1.0 |
− | | style="text-align: center;" | 3/4" | + | | style="text-align: center" | 3/4" |
− | | style="text-align: center;" | 3/4" | + | | style="text-align: center" | 3/4" |
− | | style="text-align: center;" | 3/4" | + | | style="text-align: center" | 3/4" |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
− | | style="text-align: center;" | 3/4" | + | | style="text-align: center" | 3/4" |
− | | style="text-align: center;" | 3/4" | + | | style="text-align: center" | 3/4" |
| |- | | |- |
− | | style="text-align: center;" | 1.5 | + | | style="text-align: center" | 1.5 |
− | | style="text-align: center;" | 3/4" | + | | style="text-align: center" | 3/4" |
− | | style="text-align: center;" | 3/4" | + | | style="text-align: center" | 3/4" |
− | | style="text-align: center;" | 1" | + | | style="text-align: center" | 1" |
− | | style="text-align: center;" | 1/2" | + | | style="text-align: center" | 1/2" |
− | | style="text-align: center;" | 3/4" | + | | style="text-align: center" | 3/4" |
− | | style="text-align: center;" | 3/4" | + | | style="text-align: center" | 3/4" |
| |- | | |- |
− | | style="text-align: center;" | 2.0<br/> | + | | style="text-align: center" | 2.0<br/> |
− | | style="text-align: center;" | 3/4" | + | | style="text-align: center" | 3/4" |
− | | style="text-align: center;" | 1" | + | | style="text-align: center" | 1" |
− | | style="text-align: center;" | 1" | + | | style="text-align: center" | 1" |
− | | style="text-align: center;" | 3/4" | + | | style="text-align: center" | 3/4" |
− | | style="text-align: center;" | 3/4" | + | | style="text-align: center" | 3/4" |
− | | style="text-align: center;" | 1" | + | | style="text-align: center" | 1" |
| |} | | |} |
| | | |
Line 138: |
Line 144: |
| <br/> | | <br/> |
| | | |
− | = Water traps<br/> = | + | = Water Traps<br/> = |
| | | |
| Due to temperature changes, the moisture-saturated biogas will form inevitably condensation water in the piping system. Ideally, the piping system should be laid out in a way that allows a free flow of condensation water back into the digester. If depressions in the piping system can not be avoided, one or several water traps have to be installed at the lowest point of the depressions. Inclination should not be less than 1%. | | Due to temperature changes, the moisture-saturated biogas will form inevitably condensation water in the piping system. Ideally, the piping system should be laid out in a way that allows a free flow of condensation water back into the digester. If depressions in the piping system can not be avoided, one or several water traps have to be installed at the lowest point of the depressions. Inclination should not be less than 1%. |
| | | |
| <br/>Often, water traps cannot be avoided. One has to decide then, if an 'automatic' trap or a manually operated trap is more suitable. Automatic traps have the advantage that emptying - which is easily forgotten - is not necessary. But if they dry up or blow empty, they may cause heavy and extended gas losses. In addition, they are not easily understood. Manual traps are simple and easy to understand, but if they are not emptied regularly, the accumulated condensation water will eventually block the piping system. Both kinds of traps have to be installed in a solid chamber, covered by a lid to prevent an eventual filling up by soil <ref>www.energypedia.info</ref>. | | <br/>Often, water traps cannot be avoided. One has to decide then, if an 'automatic' trap or a manually operated trap is more suitable. Automatic traps have the advantage that emptying - which is easily forgotten - is not necessary. But if they dry up or blow empty, they may cause heavy and extended gas losses. In addition, they are not easily understood. Manual traps are simple and easy to understand, but if they are not emptied regularly, the accumulated condensation water will eventually block the piping system. Both kinds of traps have to be installed in a solid chamber, covered by a lid to prevent an eventual filling up by soil <ref>www.energypedia.info</ref>. |
− |
| |
− | <br/>
| |
| | | |
| <br/> | | <br/> |
Line 171: |
Line 175: |
| <br/> | | <br/> |
| | | |
− | [https://energypedia.info/Biogas -> Back to "Biogas Portal"]
| + | |
| <div><br/></div> | | <div><br/></div> |
| + | = Further Information = |
| + | |
| + | *[[Portal:Biogas|Biogas Portal on energypedia]] |
| + | |
| + | |
| + | |
| = References = | | = References = |
| | | |
| <references /><br/> | | <references /><br/> |
| | | |
− | <br/>
| + | [[Category:Biogas]] |
The piping system connects the biogas plant with the biogas appliances. It has to be safe, economic and should allow the required gas-flow for the specific gas appliance. Galvanized steel (G.I.) pipes or Polyvinyl chloride (PVC) pipes are most commonly used for this purpose.
Most prominently, the piping system has to be reliably gas-tight during the life-span of the biogas unit. In the past, faulty piping systems were the most frequent reason for gas losses in biogas units.
Galvanized steel water supply pipes are used most frequently, because the entire piping system (gas pipe, valves and accessories) can be made of universally applicable English/U.S. Customary system components, i.e. with all dimensions in inches. Pipes with nominal dimensions of 1/2" or 3/4" are adequate for small-to-midsize plants of simple design and pipe lengths of less than 30 m. For larger plants, longer gas pipes or low system pressure, a detailed pressure-loss (pipe-sizing) calculation must be performed.Furthermore,
The necessary pipe diameter depends on the required flow-rate of biogas through the pipe and the distance between biogas digester and gas appliances. Long distances and high flow-rates lead to a decrease of the gas pressure. The longer the distance and the higher the flow rate, the higher the pressure drops due to friction. Bends and fittings increase the pressure losses. G.I. pipes show higher pressure losses than PVC pipes. Table 1 gives some values for appropriate pipe diameters. Using these pipe diameters for the specified length and flow rate, the pressure losses will not exceed 5 mbar.
The values in table 1 show that a pipe diameter of 3/4" is suitable for flow rates up to 1.5 m3/h and distances up to 100 m (PVC pipe). Therefore one could select the diameter of 3/4" as single size for the hole piping system of small biogas plants. Another option is to select the diameter of l" for the main gas pipe and 1/2" for all distribution pipes to the gas appliances.
PVC can be used for all underground pipes or pipes that are protected against sun light and out of the reach of children. For all parts of the piping system that are above ground one should install galvanized steel pipes. Therefore it is recommended to use l" G.I. steel pipes for the visible part of the piping system around the biogas digester. For the main pipe one uses l" PVC pipe placed underground. The distribution pipes should be 1/2" G.I. steel pipes or PVC pipes, depending whether they are installed above or under the wall plastering. But even though G.I. pipes are less susceptible to damage, placing them underground should always be the preferred solution.
PVC pipes have to be laid at least 25 cm deep underground. They should be placed in a sand bed and be covered with sand or fine earth. One should carefully back-fill the ditches in order to avoid stones lying directly above the pipe.
When the piping is installed - and before refilling the ditches - it has to be tested for possible gas leakage. This can be done by pumping air into the closed piping system up to a pressure that is 2.5 times the maximum gas pressure of the biogas plant. If pressure loss occurs within few hours, every joint of the piping system has to be checked with soap water. Soap-bubbles indicate any leakage of gas [1].
The valves, fittings and piping must be mediumproof and corrosion-resistant. Valves and fittings such as couplers, shut-off gate valves, flap traps, cleaning ports and pressure gauges must be readily accessible and operable and they must also be installed in such a way as to be safe from frost damage.
The 'Sicherheitsregeln für Biogasanlagen' (Safety Rules for Biogas Systems) issued by the Bundesverband der landwirtschaftlichen Berufsgenossenschaften (German Agricultural Occupational Health and Safety Agency) contain information about the regulations for piping, valves and fittings and can be of assistance in achieving compliance with the laws and engineering codes with regard to material properties, safety precautions and leak tests for safe operation of the biogas plant [3-18]. One factor that has proved extremely important is the necessity of providing suitable means of removing condensate from all piping runs, without exception, or of running the pipes with enough fall to ensure that slight settling or sag cannot produce unintended high points along the runs. On account of the low pressures in the system, very small quantities of condensate can suffice to cause a complete blockage [2].
Due to temperature changes, the moisture-saturated biogas will form inevitably condensation water in the piping system. Ideally, the piping system should be laid out in a way that allows a free flow of condensation water back into the digester. If depressions in the piping system can not be avoided, one or several water traps have to be installed at the lowest point of the depressions. Inclination should not be less than 1%.
To the extent possible, ball valves or cock valves suitable for gas installations should be used as shutoff and isolating elements. The most reliable valves are chrome-plated ball valves. Gate valves of the type normally used for water pipes are not suitable. Any water valves exceptionally used must first be checked for gas-tightness. They have to be greased regularly. A U-tube pressure gauge is quick and easy to make and can normally be expected to meet the requirements of a biogas plant.
The main gas valve has to be installed close to the biogas digester. Sealed T-joints should be connected before and after the main valve. With these T-joints it is possible to test the digester and the piping system separately for their gas-tightness. Ball valves as shutoff devices should be installed at all gas appliances. With shutoff valves, cleaning and maintenance work can be carried out without closing the main gas valve.
Sensors in the gas space must satisfy explosion protection requirements and should be resistant to corrosion and high levels of moisture.
The sensors used to measure the temperature should be installed at various heights so that stratification and inadequate mixing can be detected. Care should also be taken that the sensors are not installed in dead zones or too close to the temperature stabilisation equipment. Resistance sensors (e.g. PT 1000 or PT 100) or thermocouples are suitable for measuring the temperature.