|
|
Line 1: |
Line 1: |
| | | |
− | [[Portal:Hydro|► Back to Hydro Portal]] | + | [[Portal:Hydro|► Back to Hydro Portal]]<br/> |
| | | |
| = Overview<br/> = | | = Overview<br/> = |
Line 49: |
Line 49: |
| == Methods of Head and Flow Measurement without Sophisticated Tools<br/> == | | == Methods of Head and Flow Measurement without Sophisticated Tools<br/> == |
| | | |
− | *'''<u><span style="font-weight: bold">E</span>stimation of height</u>''' can be done easiest if there is a steep slope (waterfall) by rope. | + | *'''<u><span style="font-weight: bold;">E</span>stimation of height</u>''' can be done easiest if there is a steep slope (waterfall) by rope. |
| | | |
| <br/> | | <br/> |
Line 63: |
Line 63: |
| <br/> | | <br/> |
| | | |
− | {| cellspacing="1" cellpadding="5" border="0" align="center" style="width: 500px" | + | {| align="center" style="width: 500px;" border="0" cellspacing="1" cellpadding="5" |
| |- | | |- |
| | [[File:Height measure by level.jpg|thumb|left|200px|Height measure by level.jpg]]<br/> | | | [[File:Height measure by level.jpg|thumb|left|200px|Height measure by level.jpg]]<br/> |
Line 97: |
Line 97: |
| </ul> | | </ul> |
| </ul> | | </ul> |
| + | |
| + | </ul> |
| | | |
| *Pipeline (penstock) length | | *Pipeline (penstock) length |
Line 146: |
Line 148: |
| <u>Small hydro can be further subdivided into mini, micro and pico:</u> | | <u>Small hydro can be further subdivided into mini, micro and pico:</u> |
| | | |
− | {| cellspacing="1" cellpadding="1" border="1" class="FCK__ShowTableBorders" style="width: 100%" | + | {| class="FCK__ShowTableBorders" style="width: 100%;" border="1" cellspacing="1" cellpadding="1" |
| |- | | |- |
| | | | | |
| *'''Mini (MH)'''<br/> | | *'''Mini (MH)'''<br/> |
| | | |
− | | style="width: 70px" | < 1 MW | + | | style="width: 70px;" | < 1 MW |
− | | style="width: 155px" | grid connected | + | | style="width: 155px;" | grid connected |
| | special know how required | | | special know how required |
| |- | | |- |
Line 158: |
Line 160: |
| *'''Micro''' | | *'''Micro''' |
| | | |
− | | style="width: 70px" | < 100 kW | + | | style="width: 70px;" | < 100 kW |
− | | style="width: 155px" | partially grid con.<br/> | + | | style="width: 155px;" | partially grid con.<br/> |
| | professional know how required | | | professional know how required |
| |- | | |- |
Line 165: |
Line 167: |
| *'''Pico (PH)''' | | *'''Pico (PH)''' |
| | | |
− | | style="width: 70px" | < 10 kW | + | | style="width: 70px;" | < 10 kW |
− | | style="width: 155px" | island grids | + | | style="width: 155px;" | island grids |
| | small series units produced locally; professional equipment available | | | small series units produced locally; professional equipment available |
| |- | | |- |
Line 172: |
Line 174: |
| *'''Family (FH)''' | | *'''Family (FH)''' |
| | | |
− | | style="width: 70px" | < ~1 kW | + | | style="width: 70px;" | < ~1 kW |
− | | style="width: 155px" | single households/clusters | + | | style="width: 155px;" | single households/clusters |
| | often locally handmade solutions; professional equipment available | | | often locally handmade solutions; professional equipment available |
| |} | | |} |
Line 214: |
Line 216: |
| <br/> | | <br/> |
| | | |
− | {| cellspacing="1" cellpadding="5" border="1" style="width: 100%" | + | {| style="width: 100%;" border="1" cellspacing="1" cellpadding="5" |
| |- | | |- |
− | | style="background-color: rgb(153, 153, 153)" | | + | | style="background-color: rgb(153, 153, 153);" | |
| '''General concepts like ‘small’ or ‘large hydro’ are not technically or scientifically rigorous indicators of impacts, economics or characteristics. Hydropower projects cover a continuum in scale, and it may be more useful to evaluate a hydropower project on its sustainability or economic performance, thus setting out more realistic indicators'''<ref>IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, Chapter 5 Hydropower (2011). Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.</ref>.<br/> | | '''General concepts like ‘small’ or ‘large hydro’ are not technically or scientifically rigorous indicators of impacts, economics or characteristics. Hydropower projects cover a continuum in scale, and it may be more useful to evaluate a hydropower project on its sustainability or economic performance, thus setting out more realistic indicators'''<ref>IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, Chapter 5 Hydropower (2011). Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.</ref>.<br/> |
| | | |
Line 225: |
Line 227: |
| <br/> | | <br/> |
| | | |
| + | <br/> |
| | | |
− | | + | <br/> |
| | | |
| == By Facility Type<br/> == | | == By Facility Type<br/> == |
Line 239: |
Line 242: |
| <br/>'''<u>'Run-of-River Hydropower' Plant (RoR)</u>'''<ref name="http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.">http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.</ref> | | <br/>'''<u>'Run-of-River Hydropower' Plant (RoR)</u>'''<ref name="http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.">http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.</ref> |
| | | |
− | {| cellspacing="1" cellpadding="1" align="left" style="width: 100%" | + | {| align="left" style="width: 100%;" cellspacing="1" cellpadding="1" |
| |- | | |- |
− | | style="width: 248px" | [[File:Run-of-River Hydropower Plant.JPG|thumb|left|x199px|Run-of-River Hydropower Plant]]<br/> | + | | style="width: 248px;" | [[File:Run-of-River Hydropower Plant.JPG|thumb|left|x199px|Run-of-River Hydropower Plant]]<br/> |
− | | style="width: 407px" | | + | | style="width: 407px;" | |
| *RoR plant produce energy from the available flow and the natural elevation drop of a river<br/> | | *RoR plant produce energy from the available flow and the natural elevation drop of a river<br/> |
| *It is suitable for rivers that have at least a minimum flow all year round.<br/> | | *It is suitable for rivers that have at least a minimum flow all year round.<br/> |
Line 258: |
Line 261: |
| <u>'''Hydropower Plant with Reservoir'''</u><ref name="http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.">http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.</ref> | | <u>'''Hydropower Plant with Reservoir'''</u><ref name="http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.">http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.</ref> |
| | | |
− | {| cellspacing="1" cellpadding="1" style="width: 100%" | + | {| style="width: 100%;" cellspacing="1" cellpadding="1" |
| |- | | |- |
− | | style="width: 222px" | [[File:Hydropower Plant with Reservoir.JPG|thumb|left|x159px|Hydropower Plant with reservoir]] | + | | style="width: 222px;" | [[File:Hydropower Plant with Reservoir.JPG|thumb|left|x159px|Hydropower Plant with reservoir]] |
− | | style="width: 433px" | | + | | style="width: 433px;" | |
| *Hydropower projects with a reservoir (storage hydropower) store water behind a dam for times when river flow is low<br/> | | *Hydropower projects with a reservoir (storage hydropower) store water behind a dam for times when river flow is low<br/> |
− | *<span style="line-height: 1.5em">Therefore power generation is more stable and less variable than for RoR plants</span> | + | *<span style="line-height: 1.5em;">Therefore power generation is more stable and less variable than for RoR plants</span> |
| *The generating stations are located at the dam toe or further downstream, connected to the reservoir through tunnels or pipelines | | *The generating stations are located at the dam toe or further downstream, connected to the reservoir through tunnels or pipelines |
| *Type and design of reservoirs are decided by the landscape and in many parts of the world are inundated river valleys where the reservoir is an artificial lake | | *Type and design of reservoirs are decided by the landscape and in many parts of the world are inundated river valleys where the reservoir is an artificial lake |
Line 272: |
Line 275: |
| <u>'''Pump Storage Hydropower Plant'''</u><ref name="http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.">http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.</ref> | | <u>'''Pump Storage Hydropower Plant'''</u><ref name="http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.">http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.</ref> |
| | | |
− | {| cellspacing="1" cellpadding="1" border="0" style="width: 100%" | + | {| style="width: 100%;" border="0" cellspacing="1" cellpadding="1" |
| |- | | |- |
| | [[File:Pump Storage Project.JPG|thumb|left|x188px|Pump Storage Project.JPG]] | | | [[File:Pump Storage Project.JPG|thumb|left|x188px|Pump Storage Project.JPG]] |
Line 285: |
Line 288: |
| <u>'''In-stream Hydropower Scheme'''</u><ref name="http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.">http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.</ref> | | <u>'''In-stream Hydropower Scheme'''</u><ref name="http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.">http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.</ref> |
| | | |
− | {| cellspacing="1" cellpadding="1" border="0" style="width: 100%" | + | {| style="width: 100%;" border="0" cellspacing="1" cellpadding="1" |
| |- | | |- |
− | | style="width: 206px" | | + | | style="width: 206px;" | |
| [[File:In-stream Hydropower Scheme.PNG|thumb|left|x134px|n-storgare hydropower scheme]]non typical installation of an in-stream HPP | | [[File:In-stream Hydropower Scheme.PNG|thumb|left|x134px|n-storgare hydropower scheme]]non typical installation of an in-stream HPP |
| | | |
− | | style="width: 547px" | | + | | style="width: 547px;" | |
| *Basically in-stream Hydropower functions like a RoR scheme, but the turbine is mostly built within the dam in the riverbed. Usually the river flow is not diverted. | | *Basically in-stream Hydropower functions like a RoR scheme, but the turbine is mostly built within the dam in the riverbed. Usually the river flow is not diverted. |
| *To optimize existing weirs, barrages, canals or falls, small turbines or hydrokinetic turbines can be installed | | *To optimize existing weirs, barrages, canals or falls, small turbines or hydrokinetic turbines can be installed |
Line 301: |
Line 304: |
| [[Hydro Power Basics#toc|►Go to Top]] | | [[Hydro Power Basics#toc|►Go to Top]] |
| | | |
| + | <br/> |
| | | |
| = Facts on Hydro Power = | | = Facts on Hydro Power = |
Line 312: |
Line 316: |
| <br/> | | <br/> |
| | | |
− | {| cellspacing="1" cellpadding="1" border="1" align="center" style="height: 534px; width: 100%" | + | {| align="center" style="width: 100%; height: 534px;" border="1" cellspacing="1" cellpadding="1" |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left; background-color: rgb(204, 204, 204)" | Country<ref name="http://www.hydropower-dams.com/world-atlas-industry-guide.php?c_id=159">http://www.hydropower-dams.com/world-atlas-industry-guide.php?c_id=159</ref> | + | ! style="width: 147px; text-align: left; background-color: rgb(204, 204, 204);" scope="row" | Country<ref name="http://www.hydropower-dams.com/world-atlas-industry-guide.php?c_id=159">http://www.hydropower-dams.com/world-atlas-industry-guide.php?c_id=159</ref> |
− | ! style="width: 147px; text-align: left; background-color: rgb(204, 204, 204)" | Installed Hydropower Capacity in MW | + | ! style="width: 147px; text-align: left; background-color: rgb(204, 204, 204);" | Installed Hydropower Capacity in MW |
− | ! style="width: 147px; text-align: left; background-color: rgb(204, 204, 204)" | % of total electricity generation | + | ! style="width: 147px; text-align: left; background-color: rgb(204, 204, 204);" | % of total electricity generation |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Burundi | + | ! style="width: 147px; text-align: left;" scope="row" | Burundi |
− | | style="width: 237px; text-align: center" | 50.5 | + | | style="width: 237px; text-align: center;" | 50.5 |
− | | style="width: 230px; text-align: center" | 100 | + | | style="width: 230px; text-align: center;" | 100 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Bhutan | + | ! style="width: 147px; text-align: left;" scope="row" | Bhutan |
− | | style="width: 237px; text-align: center" | 1488 | + | | style="width: 237px; text-align: center;" | 1488 |
− | | style="width: 230px; text-align: center" | 100 | + | | style="width: 230px; text-align: center;" | 100 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Congo, Dem. Rep. | + | ! style="width: 147px; text-align: left;" scope="row" | Congo, Dem. Rep. |
− | | style="width: 237px; text-align: center" | 2442 | + | | style="width: 237px; text-align: center;" | 2442 |
− | | style="width: 230px; text-align: center" | 100 | + | | style="width: 230px; text-align: center;" | 100 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Lesotho | + | ! style="width: 147px; text-align: left;" scope="row" | Lesotho |
− | | style="width: 237px; text-align: center" | 76 | + | | style="width: 237px; text-align: center;" | 76 |
− | | style="width: 230px; text-align: center" | 100 | + | | style="width: 230px; text-align: center;" | 100 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Namibia | + | ! style="width: 147px; text-align: left;" scope="row" | Namibia |
− | | style="width: 237px; text-align: center" | 249 | + | | style="width: 237px; text-align: center;" | 249 |
− | | style="width: 230px; text-align: center" | 100 | + | | style="width: 230px; text-align: center;" | 100 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Paraguay | + | ! style="width: 147px; text-align: left;" scope="row" | Paraguay |
− | | style="width: 237px; text-align: center" | 68000 | + | | style="width: 237px; text-align: center;" | 68000 |
− | | style="width: 230px; text-align: center" | 100 | + | | style="width: 230px; text-align: center;" | 100 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Mozambique | + | ! style="width: 147px; text-align: left;" scope="row" | Mozambique |
− | | style="width: 237px; text-align: center" | 2179 | + | | style="width: 237px; text-align: center;" | 2179 |
− | | style="width: 230px; text-align: center" | 100 | + | | style="width: 230px; text-align: center;" | 100 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Zambia | + | ! style="width: 147px; text-align: left;" scope="row" | Zambia |
− | | style="width: 237px; text-align: center" | 1812 | + | | style="width: 237px; text-align: center;" | 1812 |
− | | style="width: 230px; text-align: center" | >99 | + | | style="width: 230px; text-align: center;" | >99 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Norway | + | ! style="width: 147px; text-align: left;" scope="row" | Norway |
− | | style="width: 237px; text-align: center" | 29636 | + | | style="width: 237px; text-align: center;" | 29636 |
− | | style="width: 230px; text-align: center" | 99 | + | | style="width: 230px; text-align: center;" | 99 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Albania | + | ! style="width: 147px; text-align: left;" scope="row" | Albania |
− | | style="width: 237px; text-align: center" | 1450 | + | | style="width: 237px; text-align: center;" | 1450 |
− | | style="width: 230px; text-align: center" | 98 | + | | style="width: 230px; text-align: center;" | 98 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Lao PDR | + | ! style="width: 147px; text-align: left;" scope="row" | Lao PDR |
− | | style="width: 237px; text-align: center" | 2000 | + | | style="width: 237px; text-align: center;" | 2000 |
− | | style="width: 230px; text-align: center" | 98 | + | | style="width: 230px; text-align: center;" | 98 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Tajikistan | + | ! style="width: 147px; text-align: left;" scope="row" | Tajikistan |
− | | style="width: 237px; text-align: center" | 5200 | + | | style="width: 237px; text-align: center;" | 5200 |
− | | style="width: 230px; text-align: center" | 96 | + | | style="width: 230px; text-align: center;" | 96 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Ethiopia | + | ! style="width: 147px; text-align: left;" scope="row" | Ethiopia |
− | | style="width: 237px; text-align: center" | 784 | + | | style="width: 237px; text-align: center;" | 784 |
− | | style="width: 230px; text-align: center" | >95 | + | | style="width: 230px; text-align: center;" | >95 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Malawi | + | ! style="width: 147px; text-align: left;" scope="row" | Malawi |
− | | style="width: 237px; text-align: center" | 290 | + | | style="width: 237px; text-align: center;" | 290 |
− | | style="width: 230px; text-align: center" | 95 | + | | style="width: 230px; text-align: center;" | 95 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Cameroon | + | ! style="width: 147px; text-align: left;" scope="row" | Cameroon |
− | | style="width: 237px; text-align: center" | 720 | + | | style="width: 237px; text-align: center;" | 720 |
− | | style="width: 230px; text-align: center" | 94 | + | | style="width: 230px; text-align: center;" | 94 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Nepal | + | ! style="width: 147px; text-align: left;" scope="row" | Nepal |
− | | style="width: 237px; text-align: center" | 660 | + | | style="width: 237px; text-align: center;" | 660 |
− | | style="width: 230px; text-align: center" | 92 | + | | style="width: 230px; text-align: center;" | 92 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Kyrgyz Republic | + | ! style="width: 147px; text-align: left;" scope="row" | Kyrgyz Republic |
− | | style="width: 237px; text-align: center" | 2910 | + | | style="width: 237px; text-align: center;" | 2910 |
− | | style="width: 230px; text-align: center" | 91 | + | | style="width: 230px; text-align: center;" | 91 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Congo, Rep. | + | ! style="width: 147px; text-align: left;" scope="row" | Congo, Rep. |
− | | style="width: 237px; text-align: center" | 119 | + | | style="width: 237px; text-align: center;" | 119 |
− | | style="width: 230px; text-align: center" | >90 | + | | style="width: 230px; text-align: center;" | >90 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Georgia | + | ! style="width: 147px; text-align: left;" scope="row" | Georgia |
− | | style="width: 237px; text-align: center" | 2850 | + | | style="width: 237px; text-align: center;" | 2850 |
− | | style="width: 230px; text-align: center" | 86 | + | | style="width: 230px; text-align: center;" | 86 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Brazil | + | ! style="width: 147px; text-align: left;" scope="row" | Brazil |
− | | style="width: 237px; text-align: center" | 84000 | + | | style="width: 237px; text-align: center;" | 84000 |
− | | style="width: 230px; text-align: center" | 84 | + | | style="width: 230px; text-align: center;" | 84 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Swaziland | + | ! style="width: 147px; text-align: left;" scope="row" | Swaziland |
− | | style="width: 237px; text-align: center" | 42 | + | | style="width: 237px; text-align: center;" | 42 |
− | | style="width: 230px; text-align: center" | 82 | + | | style="width: 230px; text-align: center;" | 82 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Central afric. Rep. | + | ! style="width: 147px; text-align: left;" scope="row" | Central afric. Rep. |
− | | style="width: 237px; text-align: center" | 24.6 | + | | style="width: 237px; text-align: center;" | 24.6 |
− | | style="width: 230px; text-align: center" | 80 | + | | style="width: 230px; text-align: center;" | 80 |
| |} | | |} |
| | | |
Line 466: |
Line 470: |
| <br/> | | <br/> |
| | | |
− | {| cellspacing="1" cellpadding="5" align="center" style="width: 500px" | + | {| align="center" style="width: 500px;" cellspacing="1" cellpadding="5" |
| |- | | |- |
| | [[File:Forbay trashrack pennstock.jpg|thumb|left|300px|Forbay trashrack pennstock.jpg]] | | | [[File:Forbay trashrack pennstock.jpg|thumb|left|300px|Forbay trashrack pennstock.jpg]] |
Line 474: |
Line 478: |
| <br/> | | <br/> |
| | | |
− | {| cellspacing="1" cellpadding="5" align="center" style="width: 501px" | + | {| align="center" style="width: 501px;" cellspacing="1" cellpadding="5" |
| |- | | |- |
| | [[File:Management-Poster.jpg|thumb|left|200px|alt=Management-Poster.jpg]]<br/><br/> | | | [[File:Management-Poster.jpg|thumb|left|200px|alt=Management-Poster.jpg]]<br/><br/> |
− | | style="width: 237px" | [[File:Canal-participation-2.jpg|thumb|left|200px|Canal-participation-2.jpg]] | + | | style="width: 237px;" | [[File:Canal-participation-2.jpg|thumb|left|200px|Canal-participation-2.jpg]] |
| |} | | |} |
| | | |
Line 484: |
Line 488: |
| <br/> | | <br/> |
| <div> | | <div> |
− | *<span style="line-height: 1.5em; font-size: 0.85em">For an overview or possible impacts on a mhp's success, check out the </span>'''[[:File:Mhp-tree-3.jpg|mhp-tree-diagram]]''' | + | *<span style="line-height: 1.5em; font-size: 0.85em;">For an overview or possible impacts on a mhp's success, check out the </span>'''[[:File:Mhp-tree-3.jpg|mhp-tree-diagram]]''' |
| | | |
| [[Hydro Power Basics#toc|►Go to Top]] | | [[Hydro Power Basics#toc|►Go to Top]] |
Line 615: |
Line 619: |
| <references /> | | <references /> |
| | | |
− | [[Category:Productive_Use]]
| |
− | [[Category:Large_Hydro]]
| |
| [[Category:Hydro]] | | [[Category:Hydro]] |
| + | [[Category:Large_Hydro]] |
A mass of water moving down a height difference contains energy which can be harvested using some waterwheel or turbine. The moving water drives the waterwheel and this rotation either drives machinery directly (e.g. mill, pump, hammer, thresher, ...) or is coupled with a generator which produces electric power.
Hydro power is probably the first form of automated power production which is not human / animal driven. Moving a grind stone for milling first, developed into the driving of an electrical generator. Next to steam it was for long the main power source for electricity.Its continual availability does not require any power storage (unlike wind / solar power). It is mainly mechanical hardware. This makes it relative easy to understand and repair-/maintainable. In smaller units its environmental impact becomes neglect-able (see: environmental impact assessment and pros and cons of micro hydropower).
These specific conditions limit generalising and standartisation of "how to install hydropower plants". Choosing the right location and planning requires some specific knowledge. With knowledge of water flow and height difference the potential power can be estimated.
Wrong data occurs frequently. Confirmation of existing data is highly recommended!
By measuring total height step by step, it's crucial to do the bearing strictly horizontally. Ensure that by using a level or a water filled hose. Widely available are hoses and pressure gauges which allow the easiest method of height measurement. As longer the hose as less steps have to be taken to measure the total head.
Hydropower installations can be classified by size of power output, although the power output is only an approximate diversion between different classes. There is no international consensus for setting the size threshold between small and large hydropower.
The German Federal Ministry for Environment, Nature Conservation and Nuclear Safety mentioned that a SHP is <1 MW, everything above is a large hydro electric plant and usually comes along with a large dam. The International Commission on Large Dams (ICOLD) defines a large dam as a dam with a height of 15 m or more from the foundation. If dams are between 5-15 m high and have a reservoir volume of more than 3 million m3, they are also classified as large dams. Using this definition, there are over 45 000 large dams around the world.
There is no binding definition how mini hydro power output is to be classified. Rules for communication avoiding misunderstandings: Generally the terms can be used "downwards compatible". Pico- is also Mini- but not visa versa. Specific terms (Pico, Family) should be used only if they are required to indicate specifics. The spectrum needs higher diversification as smaller it becomes as there are certain differences in technique, usage, applicability and the grade of of ability to replicate them.
Classification according to size has led to concepts such as ‘small hydro’ and ‘large hydro’, based on installed capacity measured in MW as the defining criterion. Defining hydropower by size is somewhat arbitrary, as there are no clear relationships between installed capacity and general properties of hydro power or its impacts. Hydro power comes in manifold project types (see Classification By Facility Type) and is a highly site-specific technology, where each project is a tailor-made outcome for a particular location within a given river basin to meet specific needs for energy and water management services.
However, larger facilities will tend to have lower costs on a USD/kW basis due to economies of scale, even if that tendency will only hold on average. Moreover, one large-scale hydropower project of 2,000 MW located in a remote area of one river basin might have fewer negative impacts than the cumulative impacts of four hundred 5 MW hydropower projects in many river basins (see also Negative Environmental Impacts
In 2010, in 161 countries hydropower is installed making up a worldwide installed hydro electric capacity of 926 GW which provide one-fifth of the world's electricity supply. Out of these 161 countries five countries make up more than the half of the world's hydropower production: China (~200 GW), Canada (74.4 GW), Brasil (84 GW), the USA (78.2 GW) and Russia (49.7 GW).
Often hydropower is the main or even only source for electricity production in developing countries.
Any other conventional energy source requires steady fuel. Such, like coal, gas or oil has to be purchased.
Hydropower offers a significant potential of renewable energy production. In 2009 electricity production from hydropower was about 16% of the global electricity production. The undeveloped capacity ranges from 30% in Europe up to 88% in Africa.
Small hydropower potential is given in hilly or mountainous regions, where rivers do not fall dry during the year.
Where gravity fed irrigation is practiced small and micro power plants find suiting conditions.
Mountainous regions often have bad infrastructure and are least to be connected to a electric grid. If there is water available it may be a suitable source for decentralised hydro power electrification. Such setups may even get support from governmental or major electricity supplier. The costs to connect remote areas are high, whereby the revenue, due to little amount of electricity utilised, is low.
Hydropower usually operates 24 h / day. Most mhp's are connected by a grid to their consumers. If a connection towards the national or main grid is available, electricity can be fed in there. Often micro or pico hydropower units are installed in remote areas. There they feed an isolated grid. In such grid the MHP is usually the only power source. The power produced has to be leveled equal with the power consumed (see controller).
Battery storage is no must like at solar or wind power projects. This is a big advantage as it reduces costs and maintenance significantly. Charging stations can nevertheless extend a mhp's effectiveness by utilising power in times of low demand (late night). Like this, even consumers which are too far from the station to be connected by transmission cable can be served via rechargeable batteries.
Small hydropower plants usually use (part-) river flow as driving force. Storage basins or even dams can buffer water. So demand peaks or (short) periods of water shortage can be bridged. As such infrastructures is costly and sophisticated, it's only used if there is a clear financial revenue; e.g. electricity supply for remote industries. Standard elements for mhp