|
|
Line 1: |
Line 1: |
| + | |
| + | {{tabs-2 |
| + | |:Legal Framework of CSP Utilization|Legal Framework |
| + | |:CSP Financing|Financing |
| + | }} |
| + | |
| + | {| cellspacing="0" cellpadding="0" border="0" style="width: 100%" |
| + | |- |
| + | | style="width: 370px" | __TOC__ |
| + | |
| + | | style="width: 394px" | [[File:CSP Icon.png|right|32px|Go back to the CSP Overview|alt=Go back to the CSP Overview|link=Concentrating Solar Power (CSP)]] |
| + | |} |
| | | |
| = Introduction = | | = Introduction = |
| | | |
− | <span style="line-height: 1.5em; font-size: 0.85em;">The parameters that determine the optimal plant </span><span style="line-height: 1.5em; font-size: 0.85em;">design are many. An important consideration is the </span><span style="line-height: 1.5em; font-size: 0.85em;">role of thermal energy storage. Thermal energy storage </span><span style="line-height: 1.5em; font-size: 0.85em;">increases costs, but allows higher capacity factors, </span><span style="line-height: 1.5em; font-size: 0.85em;">dispatchable generation when the sun is not shining and/ </span><span style="line-height: 1.5em; font-size: 0.85em;">or the maximisation of generation at peak demand times. </span><span style="line-height: 1.5em; font-size: 0.85em;">Costs increase, because of the investment in thermal </span><span style="line-height: 1.5em; font-size: 0.85em;">energy storage, but also if the solar field size is increased </span><span style="line-height: 1.5em; font-size: 0.85em;">to allow operation of the plant and storage of solar heat </span><span style="line-height: 1.5em; font-size: 0.85em;">to increase the capacity factor<ref>2012_IRENA_Costs of CSP</ref>.</span> | + | <span style="line-height: 1.5em; font-size: 0.85em">The parameters that determine the optimal plant </span><span style="line-height: 1.5em; font-size: 0.85em">design are many. An important consideration is the </span><span style="line-height: 1.5em; font-size: 0.85em">role of thermal energy storage. Thermal energy storage </span><span style="line-height: 1.5em; font-size: 0.85em">increases costs, but allows higher capacity factors, </span><span style="line-height: 1.5em; font-size: 0.85em">dispatchable generation when the sun is not shining and/ </span><span style="line-height: 1.5em; font-size: 0.85em">or the maximisation of generation at peak demand times. </span><span style="line-height: 1.5em; font-size: 0.85em">Costs increase, because of the investment in thermal </span><span style="line-height: 1.5em; font-size: 0.85em">energy storage, but also if the solar field size is increased </span><span style="line-height: 1.5em; font-size: 0.85em">to allow operation of the plant and storage of solar heat </span><span style="line-height: 1.5em; font-size: 0.85em">to increase the capacity factor<ref>2012_IRENA_Costs of CSP</ref>.</span> |
| | | |
− | <span style="line-height: 1.5em; font-size: 0.85em;">The role of independent regulators </span><span style="line-height: 1.5em; font-size: 0.85em;">should be strengthened. In particular, they </span><span style="line-height: 1.5em; font-size: 0.85em;">need to be equipped with an adequate, separate </span><span style="line-height: 1.5em; font-size: 0.85em;">budget, clearly defined powers to make </span><span style="line-height: 1.5em; font-size: 0.85em;">binding decisions, and irrevocable, fixed-term </span><span style="line-height: 1.5em; font-size: 0.85em;">appointments for senior staff.</span><span style="line-height: 1.5em; font-size: 0.85em;">Independently of the specific market design </span><span style="line-height: 1.5em; font-size: 0.85em;">and industry structure, it is essential that costreflective </span><span style="line-height: 1.5em; font-size: 0.85em;">price signals exist and are able to </span><span style="line-height: 1.5em; font-size: 0.85em;">trigger investments. The phase-out of all fossil </span><span style="line-height: 1.5em; font-size: 0.85em;">fuel subsidies is a key tool to achieve this. </span><span style="line-height: 1.5em; font-size: 0.85em;">While cost-reflective price signals are needed </span><span style="line-height: 1.5em; font-size: 0.85em;">to ensure energy efficiency and to relieve state </span><span style="line-height: 1.5em; font-size: 0.85em;">budgets, it must be ensured that electricity </span><span style="line-height: 1.5em; font-size: 0.85em;">does not become unaffordable for vulnerable </span><span style="line-height: 1.5em; font-size: 0.85em;">consumers. </span><span style="line-height: 1.5em; font-size: 0.85em;">This section elaborates on the key actions required </span><span style="line-height: 1.5em; font-size: 0.85em;">today to facilitate the transition to renewables </span><span style="line-height: 1.5em; font-size: 0.85em;">beyond 2020. It treats all indispensable </span><span style="line-height: 1.5em; font-size: 0.85em;">elements of the transition: the investment </span><span style="line-height: 1.5em; font-size: 0.85em;">framework, renewables support, (international) </span><span style="line-height: 1.5em; font-size: 0.85em;">transmission as well as industrial policy and </span><span style="line-height: 1.5em; font-size: 0.85em;">local value creation.</span> | + | <span style="line-height: 1.5em; font-size: 0.85em">The role of independent regulators </span><span style="line-height: 1.5em; font-size: 0.85em">should be strengthened. In particular, they </span><span style="line-height: 1.5em; font-size: 0.85em">need to be equipped with an adequate, separate </span><span style="line-height: 1.5em; font-size: 0.85em">budget, clearly defined powers to make </span><span style="line-height: 1.5em; font-size: 0.85em">binding decisions, and irrevocable, fixed-term </span><span style="line-height: 1.5em; font-size: 0.85em">appointments for senior staff.</span><span style="line-height: 1.5em; font-size: 0.85em">Independently of the specific market design </span><span style="line-height: 1.5em; font-size: 0.85em">and industry structure, it is essential that costreflective </span><span style="line-height: 1.5em; font-size: 0.85em">price signals exist and are able to </span><span style="line-height: 1.5em; font-size: 0.85em">trigger investments. The phase-out of all fossil </span><span style="line-height: 1.5em; font-size: 0.85em">fuel subsidies is a key tool to achieve this. </span><span style="line-height: 1.5em; font-size: 0.85em">While cost-reflective price signals are needed </span><span style="line-height: 1.5em; font-size: 0.85em">to ensure energy efficiency and to relieve state </span><span style="line-height: 1.5em; font-size: 0.85em">budgets, it must be ensured that electricity </span><span style="line-height: 1.5em; font-size: 0.85em">does not become unaffordable for vulnerable </span><span style="line-height: 1.5em; font-size: 0.85em">consumers. </span><span style="line-height: 1.5em; font-size: 0.85em">This section elaborates on the key actions required </span><span style="line-height: 1.5em; font-size: 0.85em">today to facilitate the transition to renewables </span><span style="line-height: 1.5em; font-size: 0.85em">beyond 2020. It treats all indispensable </span><span style="line-height: 1.5em; font-size: 0.85em">elements of the transition: the investment </span><span style="line-height: 1.5em; font-size: 0.85em">framework, renewables support, (international) </span><span style="line-height: 1.5em; font-size: 0.85em">transmission as well as industrial policy and </span><span style="line-height: 1.5em; font-size: 0.85em">local value creation.</span> |
| | | |
| <br/> | | <br/> |
Line 10: |
Line 22: |
| = Comparison of CSP Technologies = | | = Comparison of CSP Technologies = |
| | | |
− | <span style="line-height: 1.5em; font-size: 0.85em;">Parabolic trough plant are the most widely commercially </span><span style="line-height: 1.5em; font-size: 0.85em;">deployed CSP plant, but are not a mature technology and </span><span style="line-height: 1.5em; font-size: 0.85em;">improvements in performance and cost reductions are </span><span style="line-height: 1.5em; font-size: 0.85em;">expected. Virtually all PTC systems currently deployed </span><span style="line-height: 1.5em; font-size: 0.85em;">do not have thermal energy storage and only generate </span><span style="line-height: 1.5em; font-size: 0.85em;">electricity during daylight hours. </span><span style="line-height: 1.5em; font-size: 0.85em;">Most CSP projects currently under construction or </span><span style="line-height: 1.5em; font-size: 0.85em;">development are based on parabolic trough technology, </span><span style="line-height: 1.5em; font-size: 0.85em;">as it is the most mature technology and shows the lowest </span><span style="line-height: 1.5em; font-size: 0.85em;">development risk. </span><br/> | + | <span style="line-height: 1.5em; font-size: 0.85em">Parabolic trough plant are the most widely commercially </span><span style="line-height: 1.5em; font-size: 0.85em">deployed CSP plant, but are not a mature technology and </span><span style="line-height: 1.5em; font-size: 0.85em">improvements in performance and cost reductions are </span><span style="line-height: 1.5em; font-size: 0.85em">expected. Virtually all PTC systems currently deployed </span><span style="line-height: 1.5em; font-size: 0.85em">do not have thermal energy storage and only generate </span><span style="line-height: 1.5em; font-size: 0.85em">electricity during daylight hours. </span><span style="line-height: 1.5em; font-size: 0.85em">Most CSP projects currently under construction or </span><span style="line-height: 1.5em; font-size: 0.85em">development are based on parabolic trough technology, </span><span style="line-height: 1.5em; font-size: 0.85em">as it is the most mature technology and shows the lowest </span><span style="line-height: 1.5em; font-size: 0.85em">development risk. </span><br/> |
| | | |
− | <span style="line-height: 1.5em; font-size: 0.85em;">Parabolic troughs and solar towers, </span><span style="line-height: 1.5em; font-size: 0.85em;">when combined with thermal energy storage, can meet </span><span style="line-height: 1.5em; font-size: 0.85em;">the requirements of utility-scale, schedulable power plant. </span><span style="line-height: 1.5em; font-size: 0.85em;">Solar tower and linear Fresnel systems are only beginning </span><span style="line-height: 1.5em; font-size: 0.85em;">to be deployed and there is significant potential to </span><span style="line-height: 1.5em; font-size: 0.85em;">reduce their capital costs and improve performance, </span><span style="line-height: 1.5em; font-size: 0.85em;">particularly for solar towers. However, parabolic trough </span><span style="line-height: 1.5em; font-size: 0.85em;">systems, with their longer operational experience of </span><span style="line-height: 1.5em; font-size: 0.85em;">utility-size plants, represent a less flexible, but low-risk </span><span style="line-height: 1.5em; font-size: 0.85em;">option today. </span><br/> | + | <span style="line-height: 1.5em; font-size: 0.85em">Parabolic troughs and solar towers, </span><span style="line-height: 1.5em; font-size: 0.85em">when combined with thermal energy storage, can meet </span><span style="line-height: 1.5em; font-size: 0.85em">the requirements of utility-scale, schedulable power plant. </span><span style="line-height: 1.5em; font-size: 0.85em">Solar tower and linear Fresnel systems are only beginning </span><span style="line-height: 1.5em; font-size: 0.85em">to be deployed and there is significant potential to </span><span style="line-height: 1.5em; font-size: 0.85em">reduce their capital costs and improve performance, </span><span style="line-height: 1.5em; font-size: 0.85em">particularly for solar towers. However, parabolic trough </span><span style="line-height: 1.5em; font-size: 0.85em">systems, with their longer operational experience of </span><span style="line-height: 1.5em; font-size: 0.85em">utility-size plants, represent a less flexible, but low-risk </span><span style="line-height: 1.5em; font-size: 0.85em">option today. </span><br/> |
| | | |
− | <span style="line-height: 1.5em; font-size: 0.85em;"></span><span style="line-height: 1.5em; font-size: 0.85em;">Solar towers using molten-salt as a high temperature </span><span style="line-height: 1.5em; font-size: 0.85em;">heat transfer fluid and storage medium (or other high </span><span style="line-height: 1.5em; font-size: 0.85em;">temperature medium) appear to be the most promising </span><span style="line-height: 1.5em; font-size: 0.85em;">CSP technology for the future. This is based on their </span><span style="line-height: 1.5em; font-size: 0.85em;">low energy storage costs, the high capacity factor </span><span style="line-height: 1.5em; font-size: 0.85em;">achievable, greater efficiency of the steam cycle and </span><span style="line-height: 1.5em; font-size: 0.85em;">their firm output capability. </span><span style="line-height: 1.5em; font-size: 0.85em;">While the levelised cost of electricity (LCOE) of parabolic </span><span style="line-height: 1.5em; font-size: 0.85em;">trough systems does not tend to decline with higher </span><span style="line-height: 1.5em; font-size: 0.85em;">capacity factors, the LCOE of solar towers tends to </span><span style="line-height: 1.5em; font-size: 0.85em;">decrease as the capacity factor increases. This is mainly </span><span style="line-height: 1.5em; font-size: 0.85em;">due to the significantly lower specific cost (up to three </span><span style="line-height: 1.5em; font-size: 0.85em;">times lower) of the molten-salt energy storage in solar </span><span style="line-height: 1.5em; font-size: 0.85em;">tower plants.</span> | + | <span style="line-height: 1.5em; font-size: 0.85em"></span><span style="line-height: 1.5em; font-size: 0.85em">Solar towers using molten-salt as a high temperature </span><span style="line-height: 1.5em; font-size: 0.85em">heat transfer fluid and storage medium (or other high </span><span style="line-height: 1.5em; font-size: 0.85em">temperature medium) appear to be the most promising </span><span style="line-height: 1.5em; font-size: 0.85em">CSP technology for the future. This is based on their </span><span style="line-height: 1.5em; font-size: 0.85em">low energy storage costs, the high capacity factor </span><span style="line-height: 1.5em; font-size: 0.85em">achievable, greater efficiency of the steam cycle and </span><span style="line-height: 1.5em; font-size: 0.85em">their firm output capability. </span><span style="line-height: 1.5em; font-size: 0.85em">While the levelised cost of electricity (LCOE) of parabolic </span><span style="line-height: 1.5em; font-size: 0.85em">trough systems does not tend to decline with higher </span><span style="line-height: 1.5em; font-size: 0.85em">capacity factors, the LCOE of solar towers tends to </span><span style="line-height: 1.5em; font-size: 0.85em">decrease as the capacity factor increases. This is mainly </span><span style="line-height: 1.5em; font-size: 0.85em">due to the significantly lower specific cost (up to three </span><span style="line-height: 1.5em; font-size: 0.85em">times lower) of the molten-salt energy storage in solar </span><span style="line-height: 1.5em; font-size: 0.85em">tower plants.</span> |
| | | |
− | <span style="line-height: 1.5em; font-size: 0.85em;">CSP technologies offer a great opportunity for local </span><span style="line-height: 1.5em; font-size: 0.85em;">manufacturing, which can stimulate local economic </span><span style="line-height: 1.5em; font-size: 0.85em;">development, including job creation. It is estimated that </span><span style="line-height: 1.5em; font-size: 0.85em;">solar towers can offer more local opportunities than </span><span style="line-height: 1.5em; font-size: 0.85em;">trough systems (Ernst & Young and Fraunhofer, 2010)<ref>2012_IRENA_Costs of CSP</ref>.</span> | + | <span style="line-height: 1.5em; font-size: 0.85em">CSP technologies offer a great opportunity for local </span><span style="line-height: 1.5em; font-size: 0.85em">manufacturing, which can stimulate local economic </span><span style="line-height: 1.5em; font-size: 0.85em">development, including job creation. It is estimated that </span><span style="line-height: 1.5em; font-size: 0.85em">solar towers can offer more local opportunities than </span><span style="line-height: 1.5em; font-size: 0.85em">trough systems (Ernst & Young and Fraunhofer, 2010)<ref>2012_IRENA_Costs of CSP</ref>.</span> |
| | | |
| <br/> | | <br/> |
Line 22: |
Line 34: |
| = Capital Flow CSP<ref>2009_International Finance Cooperation_CSP and the Green Technology Fund</ref> = | | = Capital Flow CSP<ref>2009_International Finance Cooperation_CSP and the Green Technology Fund</ref> = |
| | | |
− | *<span style="font-size: 0.85em;">Abengoa Solar – financed PS10, PS20, Solnova ( 2 x 50MW) in </span><span style="font-size: 0.85em;">Spain and Algeria & Morocco ISCCS with bank debt and same </span><span style="font-size: 0.85em;">plan for APS Solana (280 MW) in US </span><br/> | + | *<span style="font-size: 0.85em">Abengoa Solar – financed PS10, PS20, Solnova ( 2 x 50MW) in </span><span style="font-size: 0.85em">Spain and Algeria & Morocco ISCCS with bank debt and same </span><span style="font-size: 0.85em">plan for APS Solana (280 MW) in US </span><br/> |
− | *<span style="font-size: 0.85em;"></span><span style="font-size: 0.85em;">Solar Millennium - financed Andasol 1 & 2 in Spain with bank </span><span style="font-size: 0.85em;">debt</span><br/> | + | *<span style="font-size: 0.85em"></span><span style="font-size: 0.85em">Solar Millennium - financed Andasol 1 & 2 in Spain with bank </span><span style="font-size: 0.85em">debt</span><br/> |
− | *<span style="font-size: 0.85em;"></span><span style="font-size: 0.85em;">Acciona – financed Nevada Solar 1 (64MW) in US with bank debt</span><br/> | + | *<span style="font-size: 0.85em"></span><span style="font-size: 0.85em">Acciona – financed Nevada Solar 1 (64MW) in US with bank debt</span><br/> |
− | *<span style="font-size: 0.85em;"></span><span style="font-size: 0.85em;">GEF provided $200M for ISCCS projects in Morocco (in </span><span style="font-size: 0.85em;">construction), Egypt & Mexico - - India project was cancelled.</span><br/> | + | *<span style="font-size: 0.85em"></span><span style="font-size: 0.85em">GEF provided $200M for ISCCS projects in Morocco (in </span><span style="font-size: 0.85em">construction), Egypt & Mexico - - India project was cancelled.</span><br/> |
− | *<span style="font-size: 0.85em;"></span><span style="font-size: 0.85em;">Trough companies didn’t anticipate major problems attracting </span><span style="font-size: 0.85em;">tax equity investors/commercial debt as the ITCs were renewed </span><span style="font-size: 0.85em;">last year but the global financial crisis has created new </span><span style="font-size: 0.85em;">uncertainty and US projects are now being delayed</span><br/> | + | *<span style="font-size: 0.85em"></span><span style="font-size: 0.85em">Trough companies didn’t anticipate major problems attracting </span><span style="font-size: 0.85em">tax equity investors/commercial debt as the ITCs were renewed </span><span style="font-size: 0.85em">last year but the global financial crisis has created new </span><span style="font-size: 0.85em">uncertainty and US projects are now being delayed</span><br/> |
− | *<span style="font-size: 0.85em;"></span><span style="font-size: 0.85em;">Ample equity available for start-ups as evidenced by: Ausra, </span><span style="font-size: 0.85em;">SkyFuel, eSolar, Bright Source and Solar Reserve all conducting </span><span style="font-size: 0.85em;">successful VC fund raises</span> | + | *<span style="font-size: 0.85em"></span><span style="font-size: 0.85em">Ample equity available for start-ups as evidenced by: Ausra, </span><span style="font-size: 0.85em">SkyFuel, eSolar, Bright Source and Solar Reserve all conducting </span><span style="font-size: 0.85em">successful VC fund raises</span> |
| | | |
| <br/> | | <br/> |
| | | |
| + | <br/> |
| | | |
− | == <span class="mw-headline" id="Costs">Costs of CSP</span> == | + | == <span id="Costs" class="mw-headline">Costs of CSP</span> == |
| | | |
| As of 9 September 2009, the cost of building a CSP station was typically about US$2.50 to $4/Watt <ref>Poornima Gupta and Laura Isensee (11 September 2009). Carol Bishopric, ed. "Google Plans New Mirror For Cheaper Solar Power". Global Climate and Alternative Energy Summit. San Francisco: Reuters & businessworld.in.</ref>. Thus a 250 MW CSP station would cost $600–1000 million. New CSP stations may be economically competitive with fossil fuels.<br/> | | As of 9 September 2009, the cost of building a CSP station was typically about US$2.50 to $4/Watt <ref>Poornima Gupta and Laura Isensee (11 September 2009). Carol Bishopric, ed. "Google Plans New Mirror For Cheaper Solar Power". Global Climate and Alternative Energy Summit. San Francisco: Reuters & businessworld.in.</ref>. Thus a 250 MW CSP station would cost $600–1000 million. New CSP stations may be economically competitive with fossil fuels.<br/> |
Line 42: |
Line 55: |
| <br/> | | <br/> |
| | | |
| + | <br/> |
| | | |
| = Levelized Cost of Electricity<br/> = | | = Levelized Cost of Electricity<br/> = |
| | | |
− | <span style="font-family: arial, helvetica; font-size: 0.85em; line-height: 1.5em;">The LCOE of renewable energy technologies varies by </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em;">technology, country and project based on the renewable </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em;">energy resour</span> | + | <span style="font-family: arial, helvetica; font-size: 0.85em; line-height: 1.5em">The LCOE of renewable energy technologies varies by </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em">technology, country and project based on the renewable </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em">energy resour</span> |
| | | |
− | <span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em;">ce, capital and operating costs, and </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em;">the efficiency / performance of the technology. The </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em;">approach used in the analysis presented here is based on </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em;">a disc</span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em;">ou</span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em;">nted cash flow (DCF) analysis. This method of </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em;">calculating the cost of renewable energy technologies is </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em;">based on discounting financial flows (annual, qua</span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em;">rterly </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em;">or monthly) to a common basis, taking into consideration </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em;">the time value of money. Given the capital intensive </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em;">nature of most renewable power generation technologies </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em;">and the fact fuel costs are low, or often zero, the </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em;">weighted average cost of capital (WACC), often also </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em;">referred to as the discount rate, used to evaluate the </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em;">project has a critical impact on the LCOE. </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em;">There are many potential trade-offs to be considered </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em;">when developing an LCOE modeling approach. The </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em;">approach taken by IRENA is relatively simplistic, given the fact </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em;">that the model needs to be applied to a wide range of </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em;">technologies in different countries and regions.</span> | + | <span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em">ce, capital and operating costs, and </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em">the efficiency / performance of the technology. The </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em">approach used in the analysis presented here is based on </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em">a disc</span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em">ou</span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em">nted cash flow (DCF) analysis. This method of </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em">calculating the cost of renewable energy technologies is </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em">based on discounting financial flows (annual, qua</span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em">rterly </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em">or monthly) to a common basis, taking into consideration </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em">the time value of money. Given the capital intensive </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em">nature of most renewable power generation technologies </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em">and the fact fuel costs are low, or often zero, the </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em">weighted average cost of capital (WACC), often also </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em">referred to as the discount rate, used to evaluate the </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em">project has a critical impact on the LCOE. </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em">There are many potential trade-offs to be considered </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em">when developing an LCOE modeling approach. The </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em">approach taken by IRENA is relatively simplistic, given the fact </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em">that the model needs to be applied to a wide range of </span><span style="line-height: 1.5em; font-family: arial, helvetica; font-size: 0.85em">technologies in different countries and regions.</span> |
| | | |
| <br/> | | <br/> |
| <div> | | <div> |
− | [[File:LCOE CSP.jpg|thumb|center|480px]] | + | [[File:LCOE CSP.jpg|thumb|center|480px|alt=LCOE CSP.jpg]] |
| | | |
| <br/> | | <br/> |
Line 57: |
Line 71: |
| <br/> | | <br/> |
| | | |
− | == <span style="font-size: 22.22222328186035px; line-height: 30.464000701904297px; font-family: arial, helvetica;">CSP DropBox</span> == | + | == <span style="font-size: 22.22222328186035px; line-height: 30.464000701904297px; font-family: arial, helvetica">CSP DropBox</span> == |
| | | |
| For more information on financing of CSP Projects check out the [https://www.dropbox.com/sh/hfdl5xd3vo6w5om/3ikqMUkqs6 CSP DropBox] | | For more information on financing of CSP Projects check out the [https://www.dropbox.com/sh/hfdl5xd3vo6w5om/3ikqMUkqs6 CSP DropBox] |
Line 67: |
Line 81: |
| <br/> | | <br/> |
| | | |
− | [[Category:Concentrating_Solar_Power_(CSP)]]
| |
| [[Category:CSP]] | | [[Category:CSP]] |
| + | [[Category:Concentrating_Solar_Power_(CSP)]] |
As of 9 September 2009, the cost of building a CSP station was typically about US$2.50 to $4/Watt [4]. Thus a 250 MW CSP station would cost $600–1000 million. New CSP stations may be economically competitive with fossil fuels.
Nathaniel Bullard, a solar analyst at Bloomberg New Energy Finance, has calculated that the cost of electricity at the Ivanpah Solar Power Facility, a CSP.